PAX6 maintains β cell identity by repressing genes of alternative islet cell types
نویسندگان
چکیده
منابع مشابه
PAX6 maintains β cell identity by repressing genes of alternative islet cell types.
Type 2 diabetes is thought to involve a compromised β cell differentiation state, but the mechanisms underlying this dysfunction remain unclear. Here, we report a key role for the TF PAX6 in the maintenance of adult β cell identity and function. PAX6 was downregulated in β cells of diabetic db/db mice and in WT mice treated with an insulin receptor antagonist, revealing metabolic control of exp...
متن کاملPax5 maintains cellular identity by repressing gene expression throughout B cell differentiation.
The transcription factor Pax5 is required for many aspects of B-lymphopoiesis including lineage commitment, immunoglobulin rearrangement, pre-BCR signalling and mature B cell survival. Pax5 regulates B cell lineage commitment by concurrently activating cell specific gene expression as well as suppressing the expression of genes associated with non-B cell fates. The identity of the molecular tar...
متن کاملLkb1 maintains Treg cell lineage identity
Regulatory T (Treg) cells are a distinct T-cell lineage characterized by sustained Foxp3 expression and potent suppressor function, but the upstream dominant factors that preserve Treg lineage-specific features are mostly unknown. Here, we show that Lkb1 maintains Treg cell lineage identity by stabilizing Foxp3 expression and enforcing suppressor function. Upon T-cell receptor (TCR) stimulation...
متن کاملHow Sox2 maintains neural stem cell identity.
The transcription factor Sox2 [SRY (sex-determining region Y)-box 2] is expressed at the earliest developmental stages in the nervous system and functions as a marker protein for neural development. Sox2 is found in embryonic neural stem cells as well as in virtually all adult neural stem cells of the subventricular region and the subgranular zone of the hippocampus. Gain-of-function and loss-o...
متن کاملFunctional identification of islet cell types by electrophysiological fingerprinting
The α-, β- and δ-cells of the pancreatic islet exhibit different electrophysiological features. We used a large dataset of whole-cell patch-clamp recordings from cells in intact mouse islets (N = 288 recordings) to investigate whether it is possible to reliably identify cell type (α, β or δ) based on their electrophysiological characteristics. We quantified 15 electrophysiological variables in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Clinical Investigation
سال: 2016
ISSN: 0021-9738,1558-8238
DOI: 10.1172/jci88015